
Volume-of-Fluid Discretization Methods for PDE in Irregular Domains
Phillip Colella

Computing Sciences Directorate
Lawrence Berkeley National Laboratory

Berkeley, CA



Cartesian Grid Representation of Irregular Boundaries
Based on nodal-point representation (Shortley and Weller, 1938) or finite-volume
representation (Noh, 1964).

.

Advantages of underlying rectangular grid:

• Grid generation is tractable (Aftosmis, Berger, and Melton, 1998).

• Good discretization technology, e.g. well-understood consistency theory for
finite differences, geometric multigrid for solvers.

• Straightforward coupling to structured AMR (Chern and Colella, 1987; Young
et. al., 1990; Berger and Leveque, 1991).



Lagrangian vs. Eulerian Representations of Free Surfaces
Lagrangian:

Eulerian:

(LANL, 1950s)
Polygonal

(LANL, LLNL, 1960s)
Volume of fluid

(Osher & Sethian, 1988)
Level Set



Finite-Volume Discretization - Fixed Boundaries
Consider PDEs written in conservation form:

∇ · (∇φ) = ρ
∂U

∂t
+∇ · ~F (U) = 0

• Primary dependent variables approximate values at centers of Cartesian cells.
Extension of smooth functions to covered region exists, and extension operator
is a bounded operator on the relevant function spaces.

• Divergence theorem over each control volume leads to “finite volume”
approximation for ∇ · ~F :

∇ · ~F ≈ 1
κhd

∫
∇ · ~Fdx =

1
κh

∑
αs

~Fs · ~ns + αB
~F · ~nB ≡ D · ~F

• Away from the boundaries, method reduces to standard conservative finite
difference discretization.



• If ~Fs · ~ns approximates the value at the centroid to O(h2), then the truncation
error τ = D · ~F −∇ · ~F is given by

τ = O(h2) at interior cells (if approximation is smooth).

= O(
h

κ
) at irregular control volumes.



Poisson’s Equation

∆φ = ρ ⇒ Lhφh = ρh

Lh = D ~F, ~F ≈ ∇φ

~F computed using linear interpolation of centered
difference approximations to derivatives of φ.

Lh(φh)i =
1
κi

∑
s∈Si

asφ
h
s

as = O(
1
h2

) uniformly w.r.t. κ

The small denominator can be eliminated by diagonal scaling, eliminating the
obvious potential conditioning problem: we solve

κiL
h(φh)i = κiρ

h
i



Modified Equation Analysis
Error equation: φexact,h = φh + (Lh)−1(τ)
Modified equation: ε = (Lh)−1(τ) ≈ ∆−1τ̃

where τ̃ is some extension of τ , e.g.
piecewise constant on each control volume.

τ = O(h) 

τ =
2

O(h )

on set of width O(h) 

Smoothing of truncation error leads to a solution error that is O(h2) in max
norm.



Extension to Three Dimensions
Our matrices aren’t symmetric, nor are they M-matrices.
There are two obvious ways to extend the O(h2) flux calculation in 2D to 3D:

For intermittent configurations of adjacent small control volumes, linear
interpolation is unstable (point Jacobi diverges), while bilinear interpolation
appears to always be stable. Also, the inconsistent method coming from
piecewise-constant interpolation is stable.

Unstable cases correspond to problems where small subproblems have
eigenvalues of the wrong sign: the spectrum of PLhP t has elements in the right
half-plane, where P is the projection onto a small set (2-8) of contiguous
irregular control volumes.



Solution Error for Poisson’s Equation in 3D

grid ‖ε‖∞ p∞ ‖ε‖2 p2 ‖ε‖1 p1

163 4.80× 10−4 — 5.17× 10−5 — 1.83× 10−5 —

323 1.06× 10−4 2.17 1.25× 10−5 2.05 4.41× 10−6 2.05

643 2.43× 10−5 2.13 3.07× 10−6 2.02 1.09× 10−6 2.02



Discretization of Hyperbolic Problems

Un+1,h = Un,h −∆tD · ~Fn+ 1
2

Truncation error on irregular cells:

τ ≡ Un+1,exact − Un,exact

∆t
+ D · ~F (Uexact) = O(h) + O(∆t2) + O(

h

κ
)

Want to use a time step given by the CFL for cells without the boundary.

Un+1 = Un −∆tD · ~F

= Un − ∆t

κh
(

∑
s∈faces

αs
~Fs · ~ns + αB

~F · ~nB)



Flux Difference Redistribution
In irregular cells, we hybridize the conservative update (D · ~F ) with a
nonconservative, but stable scheme (∇ · ~F )NC , and redistribute the
nonconservative increment to nearby cells.

Un+1 = Un −∆t(D · ~F )NC − w∆t((D · ~F )− (D · ~F )NC)

The weight w is chosen so that, as κ → 1, w → 1, and w = O(κ).



The amount of mass lost from each cell is

δM = −(1− w)κ((∇ · ~F )C − (∇ · ~F )NC) = O(h)

We redistribute that mass to nearby cells in a volume-weighted way.

The truncation error for this method is τ = O(h) in cells sufficiently close to
irregular cells, τ = O(h2) otherwise.



Modified Equation Analysis

Uh = U + ε ≈ Umod

∂Umod

∂t
+∇ · ~F (Umod) = τ̃

If the boundary is noncharacteristic, the large forcing
on the boundary can only act for a short time:
dU
dt = τ̃ , but the characteristic path is in the

region where τ̃ = O(h) for only a time O(h/λ),
where λ is the characteristic speed. In that case,

Uh = U + O(h2)

uniformly in x. If the boundary is characteristic, then we observe

Uh = U + O(h) in L∞ norm

Uh = U + O(h2) in L1 norm



Diffusion in a Time-Dependent Domain

∂T

∂t
= ∆T + f on Ω(t)

∂T

∂n
= ṁ + sT on ∂Ω(t)

x

t

In order to use a second-order accurate implicit time discretization, it is
necessary to convert the moving boundary problem into a sequence of fixed
boundary problems.

• Move the boundary, updating cells that are uncovered by appropriate
extrapolation.

• Solve the heat equation on a fixed domain for one time step, using
extrapolated boundary conditions.



If we use Crank-Nicolson for the second step, the resulting method is unstable.
To obtain a stable, second-order accurate method, must use an implicit
Runge-Kutta method with better stability properties.

(I − r1∆)(I − r2∆)n+1 = (I + a∆)n + ∆t(I + r4∆)fn+ 1
2

r1 + r2 + a = ∆t , r1 + r2 + r4 =
∆t

2
, r1 + r2 >

∆t

2
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Moving Boundary Calculation in Three Dimensions



To treat more complex problems, we

• Decompose them into pieces, each one of which is well-understood, and
between which the coupling is not too strong;

• Use numerical methods based on our understanding of the components,
coupled together using predictor-corrector methods in time.

Example: Incompressible Navier-Stokes equations

∂~u

∂t
+ ~u · ∇~u +∇p = ν∆~u

∇ · ~u = 0

These equations can be splitting into three pieces:

Hyperbolic:
∂~u

∂t
+ ~u · ∇~u = 0

Parabolic:
∂~u

∂t
= ν∆~u

Elliptic: ∆p = ∇ · (−~u · ∇~u + ν∆~u)



Problems Arising in Decomposition into Classical Components
Using asymptotics to eliminate fast scales, or split slow and fast scales.

• Low Mach number asymptotics to eliminate acoustic scales: incompressible
flow, low-Mach-number combustion, anelastic models for geophysical flows
(Rehm and Baum, 1978; Majda and Sethian, 1985; Lai, Bell, Colella, 1993).

• Allspeed methods - splitting dynamics into vortical and compressive
components (Colella and Pao, 1999).

• Methods for splitting the fast dielectric relaxation dynamics in charged-fluid
models of “almost” quasineutral plasmas (Vitello and Graves, 1997; Colella,
Dorr, and Wake, 1999).

All of these approaches lead to the introduction of redundant equations or
constraints: p = const., q̇net = .... The presence of such constraints complicate
the formulation of time-discretization methods.

Hyperbolic PDEs containing gauge constraints, such as ideal MHD (∇ · ~B = 0)
or solid mechanics, are well-posed only if the constraint is satisfied. Truncation
error may cause the constraint to be violated (Miller and Colella, 2001; Crockett,
et. al., to appear).



Cartesian Grid Discretization of Free Boundary Problems

.

• Solution is double-valued on all cells intersecting the free boundary.

• Finite-volume discretization of conservation laws on each control volume on
either side of the front.

• Motion of the front and discretization in the
interior are coupled via the jump relations:
κn+1Un+1 = κnUn + { sum of fluxes }

t

x

y



Hyperbolic Free Boundary Problems

∂Uq

∂t
+∇ · ~F q = 0 on Ωq(t) , q = 1, 2

[~F · ~n− sU ] = g on ∂Ω1/2(t)

[f ] ≡ f2 − f1 1/2

(t)

(t)

(t)

n

n__dx =
dt s

Ω

Ω

Ωd

1

2

• Discrete geometric quantities are a function of time, e.g., κ = κ(t).

• Divergence theorem is applied in space-time to obtain discrete evolution
equation:

0 =
∫

∂U

∂t
+∇ · ~Fdxdt =

κ̄n+1Ūn+1 − κ̄nŪn +
∆t

h
(

∑
s∈faces

ᾱs
~Fs · ~ns + ᾱB(~F · ~nB − sU))



Chenges to Fixed-Boundary Algorithm

• Riemann problem used to compute fluxes, speed of the front.

• Small-cell stability: mass increments are redistributed along characteristics
in the direction normal to front.

δM = δM+ + δM−

δM+ =
∑

λk≥0

(lk · δM)rk

δM+ remains on the same side of the front as it was generated on, while
δM− is redistributed across the front.

• Accuracy: for genuinely nonlinear waves, free boundary is
noncharacteristic, so solution error is one order smaller that truncation error
in max norm.



Elliptic Free Boundary Problems

β∆φq = ρq on Ωq , q = 1, 2

[β
∂φ

∂n
] = gN , [φ] = gD on ∂Ω1/2

1/2

Ω

Ω

Ωd

1

2

n

Given the values at the cell centers, the algorithm for the fixed boundary can be
used to evaluate the operator, provided that one can find the values for φq

B . The
jump relations lead to a pair of linear equations for φq

B :

φ1
B − φ2

B = gD(~xB)

β1 dΦ1

dr
− β2 dΦ2

dr
= gN (~xB)

Where Φq(r) are the interpolating poly-
nomials along the normal directions
from ~xB .

.

xB



Free Boundary Problems for Diffusion

∂Tα

∂t
= Dα∆Tα + fα on Ωα(t) , α = 1, 2

[D
∂T

∂n
] = gN , [T ] = gD on ∂Ω1/2(t)

s is prescribed (not the Stefan problem).
As before, we convert a moving boundary problem into a sequence of problems
on fixed boundaries.

[D
∂T

∂n
] = gN + ~δ · [D∇∂T

∂n
]

[T ] = gD + ~δ · [∇T ] +
1
2
~δ · [∇∇T ] · ~δ

x

t



Future Work and Open Questions

• Adaptive mesh refinement.

• Software infrastructure.

• Decomposition into classical components: phase change boundaries, surface
tension.

• Consistent discretization methods for free-boundary case.

• Other applications: magnetic fusion, combustion, cell modeling, bio-MEMS.


